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Abstract

Detecting moving targets in SAR imagery has recently gained a lot of interest as a way to replace optical

moving target detection and classification in adverse (e.g. cloudy) weather conditions. This can be particularly

important for small radar antennas, which tend to have high conventional GMTI minimum detectable velocity. In

this work, we primarily focus on the problem of detecting and imaging the targets in single channel (or summed

multi-channel) SAR data. Single channel based methods provide the ability to do detection well below the normal

minimum detectable velocity of multi-channel based GMTI. We also show results for multiple channel geo-location

after single-channel detection and imaging.

The algorithms consist of the following steps: We first suppress the stationary scene by comparing non-coherent

time-subimages. We then detect the movers by applying a set of possible motion corrections to the image, and use

a novel matched filter to detect the movers in this space. We can then image the moving targets using standard
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SAR focusing techniques and geo-locate the movers using multi-channel (if available) along-track interferometry.

We demonstrate and evaluate our algorithms using data collected from the LiMIT airborne radar system.

Index Terms

synthetic aperture radar, mover detection, gmti, mti

I. INTRODUCTION

Radar systems often use ground moving target indication (GMTI) to detect ground targets with speeds

above a certain minimum detectable velocity (MDV) and synthetic aperture radar (SAR) for imaging

large stationary scenes. These systems provide vital surveillance capability, particularly in the absence of

optical/infrared, or during poor weather and cloud coverage.

This work describes a new algorithm for detecting and imaging moving targets in single or summed

channel SAR imagery, building upon previous work in this area [1]–[3]. Detecting moving targets in SAR

imagery (often called SAR-GMTI) has recently gained a lot of interest as a way to image and classify

moving targets, and to mitigate GMTI performance gaps. Synthetic aperture radar (SAR) provides fine-

resolution two dimensional mapping of stationary scenes and targets. Conventional SAR image formation

algorithms assume a completely stationary scene: The significant distortion in a SAR image caused by even

minor target motions prevents focused imaging of the movers and can obscure portions of the non-moving

scene.

SAR-GMTI on the other hand aims to take advantage of the moving target blurring to detect the

moving target. It is a difficult problem, but has a variety of important applications: since SAR-GMTI can

detect movers at velocities significantly below normal GMTI’s minimum detectable velocity, it could help

improve conventional GMTI performance when both are run simultaneously, or replace GMTI when it is

not available.

The apparent cross-range position of a moving target in a SAR image is a function of both the unknown

true cross-range position and the velocity of the target. As such the SAR-GMTI problem can be broken

into two parts: the detection of the target (apparent cross-range), and the determination of the target’s

velocity or of its true cross-range. The detection of a moving target in single channel SAR is usually

done by taking advantage of the distortion in the SAR imagery caused by moving targets in order to

separate the unfocussed moving targets from the focused stationary scene [1], [2]. The second problem is

particularly difficult in single channel SAR as it can only be determined from the SAR data by looking

for the absence of the target’s energy or shadows caused by occlusion.
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Many of the algorithms in the literature take advantage of multiple channel antennas which are able

to determine the target’s true in-range velocity to aid detection and provide geo-location. Some of the

common multiple channel methods include space time adaptive processing (STAP) or displaced phase

center antenna (DPCA) [4]–[7].

Page et al. combined constant acceleration target motion focusing with space-time adaptive processing

(STAP), and included the refocusing parameters in the STAP steering vector. Due to inhomogenous clutter

and limitations in spatial degrees of freedom, STAP performance alone in GOTCHA data was somewhat

poor. To improve the detection and geo-location performance, they combine the STAP detection with

change detection results for multiple-pass GOTCHA data [3]. For functionality in the absence of multiple-

pass data, along-track interferometry (ATI) was also added to the STAP processing [8].

An interesting single channel detection method by J.R. Fienup was to perform autofocus in patches

across the images [1], [2]. The locations of significantly improved focus after autofocus correction

indicated the presence of movers. M. Jahangir on the other hand detected and geo-located moving targets

by tracking the shadow of the target over multiple frames [9].

This work describes a new algorithm for detecting moving targets. We combine a number of the basic

elements already mentioned in previous literature along with novel algorithm innovations, to generate

a robust detection algorithm for single or multiple channel data. Our approach works on the data after

SAR image formation and exploits the well focused SAR image to first enable removing most of the

stationary scene. We apply a series of motion hypotheses to the image, and use a novel two-dimensional

matched filter to detect the best focused hypothesis at each range bin. We then apply minimum entropy

autofocus to image the target [10]. As available, multiple channel data can then be used to geo-locate the

focused moving target. As the geo-location happens after the autofocus step, it will include coherent gain

improvements provided by focusing the target.

We will demonstrate the algorithms and results using data from the Lincoln Multi-mission ISR Testbed

(LiMIT) sensor. The LiMIT sensor is a high bandwidth, 0.5 meter antenna, mounted in the nose of a

Boeing 707. The data presented here is at X-band and uses a single sum channel with 0.3 meter range

and cross-range resolution. Additionally, 8 channel data is also available for all runs and is used in the

final geo-location step. The LiMIT data contains high resolution SAR imagery of various locations near

Sierra Vista, Arizona, including busy urban scenes as well as rural unpopulated scenes.

The range to scene center was between 18-30 km with around 20 degree grazing angles and 7-12
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Fig. 1. Scene Geometry for a squinted straight line flight path.

seconds integration times. The SAR images were formed using polar format processing followed by map

drift and minimum entropy autofocus. The final image sample spacing is 0.2 meters.

II. DERIVATION

Since a target’s cross-range location is obtained from the Doppler induced by the motion of the sensor

platform, a moving target in a conventionally focused SAR scene will display two distinct effects: First,

the true cross-range position of a moving target is ambiguous with its in-range (i.e. line-of-sight) velocity.

This will cause the mover’s energy to be shifted in the image by an amount proportional to the target’s

in-range velocity. Second, the mover will be blurred in the image, both because the cross-range velocity

will cause the mover to transition through multiple cross-range cells, and because any in-range velocity

variation will cause the cross-range shift to vary.

In this section, the phase history for a moving target after SAR image formation is derived. The scene

geometry is shown in figure 1. We will consider movers in spotlight SAR imagery after conventional image

formation which includes polar formatting and autofocusing techniques. The moving target’s position is

given by:

~rm(t) =


xm(t)

ym(t)

0

 , (1)

where xm(t), ym(t), zm(t) are the target’s cross-range position, in-range position, and height respectively.
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We assume that the sensor platform follows a linear trajectory, ~rp(t), at constant velocity, given by:

~rp(t) =


vp,xt

R0 + vp,yt

0

 , (2)

where vp,x and vp,y are the cross range and range velocities and R0 is the ground range from scene center

to flightpath midpoint. Time is aligned such that t = 0 is at the center of the synthetic aperture. The base

coordinate x and y axes are aligned with the t = 0 cross-range and range axes. These coordinates are

rotated from the along-track (platform flight path)/cross-track coordinate frame by the squint angle, θ0.

For the purpose of simplicity, we remain in the slant plane by assuming that the height of the target and

the sensor are zero.

Additionally, we will use some values from a coordinate system aligned with the platform flight path:

M0 and S0, which are the cross-track and along-track distances from the synthetic aperture center to the

aim-point.

The complex phase history of the signal, in terms of wavelength λ and slow time t, of a moving target

after matched filter and passband equalization processing can be expressed as:

P (t) = exp
(
−j 4π

λ
||~rp(t)−~rm(t)||

)
(3a)

≈ exp
(
−j 4π

λ
||~rp(t)||

)
exp
(
j

4π

λ

~rp(t) ·~rm(t)

||~rp(t)||

)
, (3b)

where (3b) is a commonly used far-field approximation [11] that comes directly from the first order Taylor

expansion about rm(t). The first term in (3b) is generally removed during the SAR image formation through

motion compensation and autofocus. Substituting for ~rm(t) and ~rp(t), from equations 1 and 2, we get:

P̃ (t) = exp
(
j

4π

λ

~rp(t) ·~rm(t)

||~rp(t)||

)
(4a)

= exp
(
j

4π

λ

(vp,xt)xm(t) + (R0 + vp,yt)ym(t)

||~rp(t)||

)
. (4b)

Next, we describe the conversion from range and Doppler to range and cross-range. This is often done

using polar reformatting as described by Jakowatz et al. [12]. Polar format interpolates the phase-history

of the collection in wavenumber space (chirp frequency by slow time) (λ, t) onto a rectangular grid.

We define kx and ky be the spatial Fourier-transform wavenumber pairs of x and y respectively. The
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transformation from (λ, t)→ (kx, ky) can be geometrically shown to be:

kx =
4π

λ
sin[θ(t)− θ(0)] (5a)

ky =
4π

λ
cos[θ(t)− θ(0)] (5b)

Expanding the sine and cosines, and rewritting in terms of S0, M0, and R0, we get the following

expression for kx:

kx =
4π

λ
[sin θ(t) cos θ(0)− cos θ(t) sin θ(0)]

=
4π

λ

M0(S0 + vpt)−M0S0

R0||~rp(t)||

=
4π

λR0

M0vpt

||rp(t)||
,

(6)

A similar expansion for ky gives:

ky =
4π

λR0

R2
0 + S0vpt

||rp(t)||
. (7)

We combine (6) and (7) to solve for λ and t in terms of kx and ky:

4π

λ
=
||rp(t)||
R0

(ky − tan θ0kx) (8a)

t =
1

Ω0

kx
(ky − tan θ0kx)

(8b)

where tan θ0 = vp,y
vp,x

= S0

M0
is the tangent of the squint angle, and Ω0 = vp,x

R0
is the effective rotation rate

of the scene at t = 0 due to aiplane motion.

Plugging λ and t ref equation into the phase history (4b) gives:

P̃ (t) = exp
(
j[kxx(t) + kyy(t)]

)
(9)

This result is consistent with the projection slice theorem [12], as well as the derivation by Scarborough

et al. [3].

Since we will be applying the phase in kx, after polar format, we desire to write the equations in terms

of kx only. We define τ = 1
Ω0

kx
ky

, and rewrite P̃ (t) in terms of τ :
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P̃ (τ) = exp
(
jky[Ω0τx(τ) + y(τ)]

)
(10)

We can use equation 8b to find the relationship between t and τ :

t =
τ

1− tan θ0Ω0τ

t = τ(1 + tan θ0Ω0τ + (tan θ0Ω0τ)2 + (tan θ0Ω0τ)3...)

≈ τ + tan θ0Ω0τ
2

(11)

Since Ω0 is generally very small, often on the order 1/100 or less, we have removed all Ω0 terms of

order 2 and greater.

We assume a polynomial form for the target’s spacial motion in time, describing x(t) and y(t) to third

order in t (constant jerk):

x(t) = x0 + vxt+
1

2
axt

2 +
1

6
γxt

3

y(t) = y0 + vyt+
1

2
ayt

2 +
1

6
γyt

3 (12)

where ay, ax are the target’s range and cross-range acceleration, and γ is the jerk. We can then do a

change of variables to get x(τ) and y(τ). We rewrite x(t) in terms of τ as follows (a similar expression

applies to y(t)):

x(τ) = x0 + vx(τ + tan θ0Ω0τ
2)

+
1

2
ax(τ

2 + 2 tan θ0Ω0τ
3)

+
1

6
γx(τ

3 + 3 tan θ0Ω0τ 4)
(13)

Expanding the phase in equation 10 to third order, and substituting for x and y from equation 12 and 13,

we get:
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P̃ (τ) ≈ exp

{
jky

(
y0 + (Ω0x0 + vy)τ

+(Ω0vx +
1

2
ay + Ω0 tan θ0vy)τ

2

+(
1

2
Ω0ax +

1

6
γy + Ω0 tan θ0ay)τ

3

+O(τ 4)

)}
(14)

The linear term in τ shows the ambiguity between a moving target’s cross-range position and in-range

velocity which is inherent to movers in SAR imagery–particularly with straight line flight path geometry as

described here. The second order term will be the primary contributor to the target’s cross-range blurring

and will be dominated by ay at low mover velocities. The exact form of this equation will vary depending

on the flight path (straight vs curved), but both ay and vx will be significant contributors regardless of

the flight path or amount of squint.

Some authors present methods for resolving cross-range ambiguity via a strict constant-velocity

assumption [13]. The practical application of such methods will suffer due to navigational errors, but

more, due to departures from the constant-velocity assumption. It is easy to show in simulations how a

slight change in in-range velocity from early to late aperture will result in tens of meters of location error

or more, depending on assumptions. We have chosen not to include a sensitivity analysis in the present

paper.

III. MOVING TARGET DETECTION AND FOCUSING

Moving target processing can be split into three parts: detection, imaging, and geo-location. Here we

will focus our discussion on detection (or summed) channel SAR data. We then briefly describe how we

perform imaging as well as geo-location (geo-location only when multiple channel data is available).

Since we expect both the jerk (γ) and Ω0 terms to be relatively low for the purpose of detecting the

mover, we approximate the phase in equation 14 to second order in τ :

φ(τ) ≈ ky

(
y0 + (Ω0x0 + vy)τ

+ (Ω0vx +
1

2
ay + Ω0 tan θ0vy)τ

2
) (15)

For the same reason that a constant velocity is a poor approximation, a constant acceleration is also

often insufficient, but it usually will suffice for detection of the target. We will address the higher order

terms after initial detections have been made on the target.
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Additionally, to simplify the application of this phase we can make the approximation that ky = 4π
λ

,

which is ky at t = 0. Additionally, we can approximate λ = λ0, where λ0 corresponds to the center

frequency of the radar. This approximation is equivalent to ignoring the range walk, which may or may

not be desirable based on what operation we are performing and on what the sensor parameters are.

The second order term gives us the characteristic blurring phase term we will use to detect the moving

target, similar to [3]:

P (τ) = exp
[
−j 4π

λ
(
1

2
aeτ

2)
]

(16)

ae = 2Ω0vx + ay + 2Ω0 tan θ0vy (17)

We will utilize this characteristic blurring function to detect the moving targets in a SAR image after

being polar formatted and autofocused. The main steps of the algorithm, each of which we will describe

in detail, are:

• Background suppression: we first estimate and remove the stationary background from the focused

SAR image

• Motion compensation: we correct the SAR image formation for a set of possible moving target motion

hypotheses

• Mover detection: we apply a matched filter in the motion hypothesis domain to detect the moving

targets and the most likely motion hypothesis

• Target segmentation and focusing: we segment out the target in motion, range, and Doppler, and

apply SAR autofocus algorithms to extract the full target motion compensation

• Target geo-location: If multiple channel data is available the target can be geo-located using ATI

processing

The second to last steps are iterated per range-bin as each mover is detected and removed from the SAR

image. Additionally, when processing capacity is limited, it can be useful to apply a pre-filter (usually a

local sum over cross-range) after the background removal to find horizontal streaks in the image and to

detect the most likely ranges to contain moving targets. It is also usually not necessary to do detection

processing on every single range bin (evaluating every other or even every five range bins gave good

results for the data set we used).
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Fig. 3. Left: a chip from the original SAR image near a busy intersection. Many moving and accelerating targets can be seen as faint
horizontal streaks in the image. Right: the same chip after clutter removal. The streaks due to the moving targets are much stronger and
easier to discern in this image.

A. Background Suppression

An important first step in mover detection is stationary target suppression. If we do not first suppress

the stationary scene, then after we apply the motion hypotheses to detect the movers, stationary objects

will smear out, obscuring or reducing SINR on the focused moving targets. We propose a non-coherent

subtraction of short time subapertures to remove the stationary scene. Note that kx is equivalent to τ ,

our slow-time indicator, if ky is fixed. We use multiple time-subaperture resolutions in order to alleviate

subimage subtraction discontinuities at the kx boundary between images.

The algorithm works as follows, with each resolution dividing the original SAR image into N sub-images

(we used N = 2,3,5):

1) Fourier transform the cross-range dimension of the image to kx

2) Remove time-domain amplitude window

3) Divide the time domain into N equal sections

4) Inverse Fourier each section back to the cross-range domain

5) Calculate CFAR difference statistic for all possible sub-image combinations and average the results
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6) Upsample the statistic back to full image resolution

7) Repeat the previous steps for all N resolutions, then average over all resolutions (N) to get an initial

mask

8) Apply the mask to the original complex SAR image

9) Apply additional thresholding and blanking

10) Reapply the time-domain amplitude window in the kx domain to get the final background subtracted

complex image

The multi-resolution sub-image setup is shown in figure 2 for N=2,3 and 5. The selection of prime

numbers for N ensures that the kx sub-image boundaries never line up at the same position across all

resolutions. After we have divided the image into N low resolution sub-images, a constant false alarm

rate (CFAR) statistic provides a useful normalized measure for the sub-image subtraction. We found the

following CFAR statistic to be effective:

γ =

∑
i ||fi| − |gi||∑
i ||fi|+ |gi||

(18)

where the sum is done over a small 5 × 5 window in range and cross range, and fi is the first time-

subimage and gi is the second. The output is a lower resolution, magnitude only, difference image. We

apply this statistic to all possible image pair combinations at a given resolution, average the result for each

resolution, and then upsample back to the original image resolution. Once we have obtained upsampled

results for all resolutions, we average these into a continuous (magnitude only) mask.

We then apply this mask directly to the complex SAR image, by multiplying the original SAR data by

the smoothed magnitude of the SAR image divided by the smoothed magnitude of the difference mask:

Ib =
γ̃
˜|I0|
I0 (19)

where I0 is the complex focused SAR image, ˜|I0| is the smoothed magnitude SAR image, and γ̃ is the

smoothed difference mask. This retains both all of the complex data as well as some of the local intensity

variation from the original SAR image. Both images were smoothed with an identical 13 × 17 flat-top

smoothing filter.

In order to mitigate bright stationary points and to handle speckle noise, we apply a set of thresholds to

the mask based on both the brightness of the points in the original image and the value of the difference
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statistic. The specifics will likely change for each system but here we applied the following thresholding:

All points in the final background subtracted image are zeroed out unless they are above a difference

level statistic threshold or below an amplitude threshold (low enough to allow clutter in). This allowed

us to detect moving targets that had blurs with energy below the speckle clutter level (eg. grass or roads)

in the image. Additionally, it is useful to zero out very bright point scatterers.

Figure 3a shows the initial focused SAR image of an intesection of an urban area near the Sierra Vista

Walmart, with numerous non-instrumented moving vehicles and people. Figure 3b shows the scene after

background removal. We can see that most of the stationary clutter has been significantly reduced in

power, while the moving target blurs are accentuated.

Unlike multiple channel based clutter removal, this clutter removal depends only on the target in-

range acceleration and cross-range velocity, not on its range-rate. As such any accelerating target will be

detectable regardless of how low its average speed is.

One possible problem with the procedure described here is that since the time domain amplitude profile

of the moving target is changed by this processing, it can cause artifacts in the target focusing. Although

it is possible to instead use the background removal mask in binary fashion to try to avoid this problem,

we found better detection rates and focusing performance using the direct application of the mask onto

the complex data as described here.

B. Motion Compensation

In order to focus and then detect the moving targets, we apply a set of motion hypotheses to the SAR

image. Approximating ky = ky0, where ky0 corresponds to λ0 (at kx = 0), we can describe our motion

models application as a Fourier transform over kx:

s′(x, ae, ri) =

∫
s(kx, ri) exp

[
−j( λ0

8πΩ2
0

aek
2
x + xkx)

]
dkx (20)

where s(kx, ri) is the fourier transform of our background removed SAR image at range ri.

Each motion hypothesis is applied as a quadratic phase in the kx domain, to a single range bin. We can

plot the results as a function of acceleration hypothesis and cross-range. We can see the resulting output

on simulated data in Fig. 4. The X or hourglass shape we see in this plot is characteristic of focusing

moving targets: The energy focuses up to a point as the motion hypothesis approaches the correct value

and then defocuses as too much compensation is applied.
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It is worth mentioning that although the acceleration induced range walk does have a non-negligible

effect on many of the movers, we have found that the mover’s energy stays in the same range bin for

long enough for the mover target detection to work without any range walk correction. Most of the

detection processing we will show works on a single-range at a time and thus does not include a range

walk correction. At long integration times, a range-walk correction is likely to become necessary and the

processing can easily be adjusted to handle range-walk by including multiple range lines and applying

the quadratic phase correction in (λ,t).

Fig. 4. The acceleration vs. cross-range plot of a simulated (with some random time-domain amplitude fluctuations) point scatterer with a
non-zero acceleration. The point scatterer focuses up at the correct input acceleration (-0.06 m/s).

Fig. 5. The acceleration vs. cross-range plot of an ideal point scatterer, which is used for the 2-D matched filter detector.
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plot convolving the motion response with the 2-D matched filter. While for the original response function (left), the brightest point gives an
poor motion estimate, the response to the 2-D matched filter provides a much better estimate.

C. Two Dimensional Matched Filter

In figure, 6a, we have plotted the motion vs cross-range plot for a mover taken from the LiMIT data.

Although the energy focuses up, it does so imperfectly. This is due to higher order phase terms that are

not modeled by our second order phase correction. The best focused energy (correct quadratic hypothesis)

is both broadened, and contains significant interference fringes. These distortions create a situation where

the brightest peak in the motion vs cross-range plot is significantly offset from the desired result. This is

a common occurrence for real moving targets, which often experience non-constant accelerations.

Since it is computationally prohibitive to try to apply higher order motion hypothesis, we propose the

following solution: In order to detect the closest second order motion hypothesis in the presence of noise

and the higher order terms, we convolve the motion and cross-range image of each selected range bin

with the impulse response of an ideal point scatterer in acceleration and cross-range. This two-dimensional

matched filter aims to provide an accurate estimate of the most likely motion hypothesis for a given point

scatter based on the X or hourglass shape of the entire hypothesis vs cross-range plot.

We describe the impulse response of an ideal point scatterer in cross-range:

h(ae, x) =

∫
W (τ) exp

(
−j 4π

λ
(
1

2
aeτ

2 + Ωxτ)
)
dt (21)

where τ is evaluated at ky = 4π
λ0

and W (τ) should be set to be identical to the time-domain windowing

applied to the SAR image. The resulting filter kernel is shown in figure 5. The matched filtering then

proceeds as follows:
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Fig. 7. Left: The partially focused moving target chip after motion hypothesis based focusing. Right: The same chip after minimum entropy
autofocus. The yellow outline indicates the automatic target segmentation.

score(x, ae) = ĥ(x, ae) ∗ ŝ(x, ae) (22)

Where we have subtracted the mean over both x and ae, 〈〉, from the filter and signal equations, and

normalized the matched filter:

ĥ(x, ae) =

∣∣h(x, ae)− 〈h(x, ae)〉
∣∣∣∣∣∣h(x, ae)− 〈h(x, ae)〉
∣∣∣∣2 (23)

ŝ(x, ae) =
∣∣s(x, ae)− 〈s(x, ae)〉∣∣ (24)

This provides a final score that is both dependent upon the power of the signal and the shape similarity.

We can see the resulting score in figure 6b. It clearly accentuates the location which is closer to the

center of the hourglass shape, while de-emphasizing the bright streak to the lower left of the shape. This

provides a accurate estimate of the true second order term in the motion of the target. Note that although

we have described the hypothesis term in units of acceleration, we cannot determine how much of the

term actually represents cross-range velocity versus in-range acceleration.

D. Target Segmentation and Imaging

Once a target has been detected, it must be focused, and then the target’s energy can be extracted

from clutter (segmention). We first re-apply the estimated quadratic phase focusing function (determined

above), and this time include the full range-walk correction (see (16)). We select a target chip with enough
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Fig. 8. Left: The top 6 moving target detections for the SAR image chip of this intersection, indicated by blue squares. Right: The detections
along with the estimated target geolocations, indicated by yellow circles.

range bins near the target to entirely encapsulate any target of interest and a generous box in cross-range

to fully include the target’s blurred energy. We then apply minimum entropy autofocus [10] to find a

general motion solution that will fully focus the extracted target chip.

Once the target is focused we use the following segmentation algorithm to precisely segment the target

energy. To do so, we take advantage of the previously defined 2-D matched filter.

We reuse equations 22 and 23 but change equation 24, so that it is now normalized as well:

ŝ′(x, ae) =

∣∣s(x, ae)− 〈s(x, ae)〉∣∣∣∣∣∣s(x, ae)− 〈s(x, ae)〉∣∣∣∣2 (25)

This normalization removes the power dependence from the equation, providing a result that is only

shape dependent:

scoremf (x, r) = (ĥr(x, ae) ∗ ŝ′r(x, ae))2|ae=0 (26)

Additionally, we now use the power as a seperate feature for segmentation:

scoremag(x, r) = |s(x, r)|2; (27)

This feature separation allows us to perform a two-class (target and non-target) Gaussian classifier in

two dimensions (scoremag and scoremf ). We used a limited quantity of manually labeled data to train the

classifier, as well as performing some adaptive tuning on a per chip basis. Once peaks were classified, we

used morphological image filtering on the classified peaks to define a section of the image, and outline

the target.
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Figure 7a shows an image chip after the initial quadratic phase focusing. The target in this image is

more focused than in the original image, and most of the range walk has been removed, but we can still

see significant blurring in the target’s energy. Figure 7b shows the target after minimum entropy autofusing

focusing. The segmentation described here is visualizd by the yellow line around the target, indicating

the precisely selected target outline.

After focusing, the target energy can be extracted from the image. A separate target chip is made

(which could be placed in the image at the correct location, if geolocation can be performed) and the

blurred energy of the target is subtracted from the image so that future iterations of the algorithm will not

detect the target. Finally, after extracting each target, we iterate the detection algorithms to find additional

targets.

E. Geo-location

Although most of the work is done in single or the summed channel, it is also useful to consider

possible places where using multiple channels can be useful. In this work, we use multiple channels for

geo-location on the LiMIT data. Shadows can also be used to assist in geolocation [14], but since that

only works for very slow movers, and since our SINR was too low to get really consistent shadows, we

do not show any results with shadows here.

In order to geo-locate the detected movers, we first polar format and autofocus each channel separately,

and then apply an overall phase alignment between the channels. Each channel is polar formatted onto an

identical grid in kx and ky such that the channels are shifted to be aligned with each other in space. The

phase alignment then consists of a single phase offset for each channel, which can be easily determined

from the data.

The multiple channel geolocation is done after the detection, segmentation, and full autofocus have

been performed on the sum channel data, and the results applied to each individual channel. We use

along-track interferometric processing [8]. By measuring the phase ramp as a function of channel, across

the detected and segmented target, we can determine the appropriate geo-location of the target. Since

this is done after focusing, we will get the full coherent gain from the focused target energy. There is

an additional phase error across the antenna aperture resulting from target movement in cross-range but

since the antenna aperture is small and the targets are generally moving slowly, it will be a relatively

small effect and we ingore it here.
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Fig. 9. Injections use templates extracted from real targets, stopped at the intersection. Figure 9a shows the original SAR image of the
intersection, and figure 9b shows the extracted target templates.

Scene 1 “Cal Triherdrals” Scene 3 “Aerostat”Scene 2 “Big Dish”

Fig. 10. SAR images of the three rural scenes used for the injection analysis.

Figure 8a shows the strongest 6 detections in our SAR image chip. We can see these clearly lie on

moving target blurs. The yellow circles in Figure 8b show the estimated geo-locations of the detected

targets. In each case, the geolocations lie on the road very close to where we would predict the actual

movers to be located. In fact, we can see the shadow of the moving target on the left side of the intersection,

indicating its true geolocation, and directly above that, the muliple channel estimated geolocation.

IV. RESULTS AND ANALYSIS

The LiMIT data collection did not include truth for any moving targets in the scene. Therefore, we

propose a realistic target injection method. First, we select stationary vehicles from the focused SAR

image of the Urban scene by hand. We manually precisely outline the energy of the target we wish to use.

We then apply a method similar to the CLEAN [15], [16] algorithm, and iteratively select point scatterers

from the target area (usually about 20-30 scatterers are used).
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Fig. 11. ROC curves (detection vs false alarm rate) for the injected targets broken down by scene number (left) and template number
(right).

These point scatterers are then injected into the LiMIT SAR imagery using their ideal point response

with motion based blurring. In order to create a larger amount of target variety, we run a monte-carlo

experiment with random variation applied to the parameters of the injected targets, including target motion,

target power, Dopper and range offsets, and vehicle chip number.

Motion based defocusing is applied to the chips according to equation 10 in section II. In this study,

the motion is assumed to be linear (no turning) motion and includes 3rd and higher order terms. Precisely,

the target’s motion consists of 3 steps: A constant initial acceleration, a linearly changing acceleration,

and then a final constant acceleration. The starting acceleration, ending acceleration, and the amount of

time spent in each step is all selected randomly for each sample (the max acceleration is varied between

+- 0.3 m/s2.

Figure 9a shows the source image containing the targets and figure 9b shows the extracted target

templates. The five targets include small and large vehicles (4.5 to 7.5 meters), at two different aspect

angles. At each injection, a target template is randomly selected from the available set. The target power

is also varied so that the targets span around 20 to 40 dB peak SINR over all of the chips for every scene

(measured using the mean of the top peaks in the target chip and the median of the SAR image).

For memory reduction purposes the 6500× 6500 pixel SAR image is divided into 4 quadrants, and 29

targets are injected into each quadrant. The targets injected along the central cross range in each quadrant

and then are shifted by random amounts in range and cross-range.

A total of seven images are used which include three rural scenes using two to three different aspect

angles for each. The three scenes are shown in figure 10. Although each scene has some man-made

features, including small roads, buildings, radar dishes, etc, they mostly consist of natural terrain–trees,
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bushes, grass, and dirt. For the most part, no moving target activity is readily visible in any image. Each

SAR image is used many times, which for the entire study results in a total of 7946 injected targets.

To generate the ROC curve, we used a combination of two thresholds: The peak scatterer energy in the

detected target, and a metric representing the total amount of focusing performed on the target chip [1].

The second metric was very effective at reducing the number of false alarms. In order to independently

evaluate the false alarm rate, we perform our false alarm analysis on the scene without any injected targets.

The results are shown in figure 11. In figure 11a, we plot each scene as a separate curve in the chart.

We can see that the detection rate peaks at around 90 − 95% with 10-100 false alarms per square km.

Scene 1 gives the lowest false alarm rates at reasonable detection rates. Many of the false alarms in scenes

2-3 are caused by man-made objects, including flashing power lines (which look very similar to moving

targets), and radar dishes. Additionally, some of the reported false alarms are likely to be true moving

target detections as we have no way of ensuring that the scenes were completely free of moving targets.

In figure 11b, we compare the results for different target types. The targets that are smaller, particularly

in cross-range extent and peak dB, are significantly harder to detect. Additionally, because the motion is

randomly varied, some of the missed detections come from nearly stationary targets.

V. SUMMARY

We presented here an algorithm to solve the problem of detecting movers in a single channel SAR

system. The algorithms were demonstrated to be effective at detecting and focusing movers in LiMIT

radar data. In addition, we used multiple channels to geo-locate the targets after they were detected.

Although it is useful to demonstrate the detection of the targets in single channel, multiple channels

could be used for detection as well and combining multiple channel information with the non-coherent

time-based background suppression is an interesting topic for future study.

Along with describing our algorithms, we also attempted to quantify our single channel detection results

using a monte-carlo simulation with realistic injected targets, and demonstrate good detection and false

alarm rates. We can achieve good detection rates, even well below MDV. Compared to GMTI though,

we expect that we would have significantly lower area coverage rate due to the longer integration times

required for the high resolution in SAR imagery. We would therefor expect a SAR based GMTI system

to work particularly well for cases where we were interested in detecting and tracking a few targets of

interest–especially if those targets are likely to spend any time at below MDV speeds.
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